Section 11.1 Logic Gates
Logic gates are the foundation of digital circuits. They process binary inputs to produce specific outputs. The basic logic gates are and Derived gates include and Each gate has its own symbol and behavior defined by a truth table.
Subsection 11.1.1 AND Gate
xxxxxxxxxx
from sympy.logic.boolalg import And
from sympy.abc import A, B
And(A, B)
Truth table for the
AND
gate:xxxxxxxxxx
# Generate truth table for AND gate
print("\nA | B | A AND B")
print("--|---|--------")
for A in [False, True]:
for B in [False, True]:
print(f"{int(A)} | {int(B)} | {int(bool(And(A, B)))}")
Subsection 11.1.2 OR GATE
xxxxxxxxxx
from sympy.logic.boolalg import Or
from sympy.abc import A, B
Or(A, B)
Truth table for the
OR
gate:xxxxxxxxxx
# Generate truth table for OR gate
print("\nA | B | A OR B")
print("--|---|--------")
for A in [False, True]:
for B in [False, True]:
print(f"{int(A)} | {int(B)} | {int(bool(Or(A, B)))}")
Subsection 11.1.3 NOT Gate
xxxxxxxxxx
from sympy.logic.boolalg import Not
from sympy.abc import A
Not(A)
Truth table for the
NOT
gate:xxxxxxxxxx
# Generate truth table for NOT gate
print("\nA | NOT A")
print("--|-------")
for A in [False, True]:
print(f"{int(A)} | {int(bool(Not(A)))}")
Subsection 11.1.4 NAND Gate
Subsection 11.1.5 NOR Gate
Subsection 11.1.6 XOR Gate
Subsection 11.1.7 XNOR Gate
xxxxxxxxxx
from sympy.logic.boolalg import And, Or, Not, Xor
​
def nand(A, B):
return Not(And(A, B))
​
def nor(A, B):
return Not(Or(A, B))
​
def xor(A, B):
return Xor(A, B)
​
def xnor(A, B):
return Not(Xor(A, B))
​
# User-defined inputs
A = 1 # Replace with 0 or 1 for input A
B = 0 # Replace with 0 or 1 for input B
gate = "xor" # Replace with "nand", "nor", "xor", or "xnor"
​
​
if gate == "nand":
result = nand(A, B)
elif gate == "nor":
result = nor(A, B)
elif gate == "xor":
result = xor(A, B)
elif gate == "xnor":
result = xnor(A, B)
else:
result = "Invalid gate type! Please use 'nand', 'nor', 'xor', or 'xnor'."
​
result