Skip to main content
Linear Algebra with SageMath:
Learn math with open-source software
Allaoua Boughrira, Hellen Colman, Michael Kattner, Samuel Lubliner,
Contents
Index
Search Book
close
Search Results:
No results.
Dark Mode
Prev
Up
Next
\(\newcommand{\N}{\mathbb N} \newcommand{\Z}{\mathbb Z} \newcommand{\Q}{\mathbb Q} \newcommand{\R}{\mathbb R} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \definecolor{fillinmathshade}{gray}{0.9} \newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}} \)
Front Matter
Preface
Acknowledgements
From the Student Authors
Authors and Contributors
Colophon
1
Getting Started
1.1
Intro to Sage
1.1.1
Sage as a Calculator
1.1.2
Variables and Names
1.2
Data Types
1.3
Flow Control Structures
1.3.1
Conditional Statements
1.3.2
Iteration
1.3.2.1
List Comprehension
1.3.3
Other Flow Control Structures
1.4
Defining Functions
1.5
Object-Oriented Programming
1.5.1
Objects in Sage
1.5.2
Dot Notation and Methods
1.5.3
Sage’s Set Class
1.6
Display Values
1.7
Debugging
1.8
Documentation
1.9
Miscellaneous Features
1.9.1
Reading and Writing Files in Sage
1.9.2
Executing Shell Commands in Sage
1.9.3
Importing and Exporting Data (CSV, JSON, TXT)
1.9.4
Using External Libraries in Sage
1.10
Run Sage in the browser
2
Vectors and Matrices
2.1
Vectors
2.2
Matrices
3
System of Equations
3.1
Solving Equations
3.2
Solving Systems of Equations
4
System of Equations with Matrices
4.1
Row Reduction
4.2
Systems of Equations with Matrices
4.2.1
Differences in Solutions
5
Vectors
5.1
Operations with Vectors
5.2
Cross and Dot Products of Vectors
6
Matrices
6.1
Special Matrices
6.2
Operations With Matrices
6.3
Determinant and Inverse
6.4
Transpose and Conjugate
6.5
LU Decomposition
7
Equations of Lines and Planes
8
Orthogonality
8.1
Normalized Vector
9
Linear Transformation From R Pow N to R Pow M
10
Eigenvectors and Eigenvalues
11
Diagonalization
12
General Vector Spaces
13
Linear Independence
14
General Linear Transformations
Back Matter
References
Colophon
Index
Preface
From the Student Authors
PLACEHOLDER
Allaoua Boughrira and Samuel Lubliner